Laser-combined scanning tunnelling microscopy for probing ultrafast transient dynamics.

نویسندگان

  • Yasuhiko Terada
  • Shoji Yoshida
  • Osamu Takeuchi
  • Hidemi Shigekawa
چکیده

The development of time-resolved scanning tunnelling microscopy (STM), in particular, attempts to combine STM with ultrafast laser technology, is reviewed with emphasis on observed physical quantities and spatiotemporal resolution. Ultrashort optical pulse technology has allowed us to observe transient phenomena in the femtosecond range, which, however, has the drawback of a relatively low spatial resolution due to the electromagnetic wavelength used. In contrast, STM and its related techniques, although the time resolution is limited by the circuit bandwidth (∼100 kHz), enable us to observe structures at the atomic level in real space. Our purpose has been to combine these two techniques to achieve a new technology that satisfies the requirements for exploring the ultrafast transient dynamics of the local quantum functions in organized small structures, which will advance the pursuit of future nanoscale scientific research in terms of the ultimate temporal and spatial resolutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing ultrafast spin dynamics with optical pump-probe scanning tunnelling microscopy.

Studies of spin dynamics in low-dimensional systems are important from both fundamental and practical points of view. Spin-polarized scanning tunnelling microscopy allows localized spin dynamics to be characterized and plays important roles in nanoscale science and technology. However, nanoscale analysis of the ultrafast dynamics of itinerant magnetism, as well as its localized characteristics,...

متن کامل

Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...

متن کامل

Super-diffusion of excited carriers in semiconductors

The ultrafast spatial and temporal dynamics of excited carriers are important to understanding the response of materials to laser pulses. Here we use scanning ultrafast electron microscopy to image the dynamics of electrons and holes in silicon after excitation with a short laser pulse. We find that the carriers exhibit a diffusive dynamics at times shorter than 200 ps, with a transient diffusi...

متن کامل

4D scanning ultrafast electron microscopy: visualization of materials surface dynamics.

The continuous electron beam of conventional scanning electron microscopes (SEM) limits the temporal resolution required for the study of ultrafast dynamics of materials surfaces. Here, we report the development of scanning ultrafast electron microscopy (S-UEM) as a time-resolved method with resolutions in both space and time. The approach is demonstrated in the investigation of the dynamics of...

متن کامل

Ultrafast Microscopy: Imaging Light with Photoelectrons on the Nano-Femto Scale.

Experimental methods for ultrafast microscopy are advancing rapidly. Promising methods combine ultrafast laser excitation with electron-based imaging or rely on super-resolution optical techniques to enable probing of matter on the nano-femto scale. Among several actively developed methods, ultrafast time-resolved photoemission electron microscopy provides several advantages, among which the fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 22 26  شماره 

صفحات  -

تاریخ انتشار 2010